[FM-India] [CFP] The 37th ACM Symposium on Applied Computing (SAC 2022) - Graph Models for Learning and Recognition (GMLR) Track

Madhavan Mukund madhavan at cmi.ac.in
Fri Oct 1 15:28:16 IST 2021

----- Forwarded message from fulvio.frati at unimi.it -----

Date: Fri, 01 Oct 2021 11:49:58 +0200
From: fulvio.frati at unimi.it
To: fmindia at cmi.ac.in
Subject: [CFP] The 37th ACM Symposium on Applied Computing (SAC 2022) - Graph
  Models for Learning and Recognition (GMLR) Track

*** ACM SAC 2022 ***


Graph Models for Learning and Recognition (GMLR) Track

The 37th ACM Symposium on Applied Computing (SAC 2022)

April 25-29, 2022, Brno, Czech Republic

  <http://phuselab.di.unimi.it/GMLR2022> http://phuselab.di.unimi.it/GMLR2022



The ACM Symposium on Applied Computing (SAC 2022) has been a primary
gathering forum for applied computer scientists, computer engineers,
software engineers, and application developers from around the world. SAC
2022 is sponsored by the ACM Special Interest Group on Applied Computing
(SIGAPP), and will be held in Brno, Czech Republic. The technical track on
Graph Models for Learning and Recognition (GMLR) is the first edition and is
organized within SAC 2022. Graphs have gained a lot of attention in the
pattern recognition community thanks to their ability to encode both
topological and semantic information. Encouraged by the success of CNNs, a
wide variety of methods have redefined the notion of convolution for graphs.
These new approaches have in general enabled effective training and achieved
in many cases better performances than competitors, though at the detriment
of computational costs. Typical examples of applications dealing with
graph-based representation are: scene graph generation, point clouds
classification, and action recognition in computer vision; text
classification, inter-relations of documents or words to infer document
labels in natural language processing; forecasting traffic speed, volume or
the density of roads in traffic networks, whereas in chemistry researchers
apply graph-based algorithms to study the graph structure of

This track intends to focus on all aspects of graph-based representations
and models for learning and recognition tasks. GMLR spans, but is not
limited to, the following topics:

- Graph Neural Networks: theory and applications

- Deep learning on graphs

- Graph or knowledge representational learning

- Graphs in pattern recognition

- Graph databases and linked data in AI

- Benchmarks for GNN

- Dynamic, spatial and temporal graphs

- Graph methods in computer vision

- Human behavior and scene understanding

- Social networks analysis

- Data fusion methods in GNN

- Efficient and parallel computation for graph learning algorithms

- Reasoning over knowledge-graphs

- Interactivity, explainability and trust in graph-based learning

- Probabilistic graphical models

- Biomedical data analytics on graphs

Authors of selected top papers of this track will be asked to publish an
extended version in a Special Issue of a Journal (the journal will be
announced soon).



Submission of regular papers: October 15, 2021

Notification of acceptance/rejection: December 10, 2021

Camera-ready copies of accepted papers: December 21, 2021

SAC Conference: April 25 - 29, 2022



Authors are invited to submit original and unpublished papers of research
and applications for this track. The author(s) name(s) and address(es) must
not appear in the body of the paper, and self-reference should be in the
third person. This is to facilitate double-blind review. Please, visit the
website for more information about submission



Paper registration is required, allowing the inclusion of the paper/poster
in the conference proceedings. An author or a proxy attending SAC MUST
present the paper. This is a requirement for the paper/poster to be included
in the ACM digital library. No-show of registered papers and posters will
result in excluding them from the ACM digital library.



Donatello Conte (University of Tours)

Giuliano Grossi (University of Milan)

Raffaella Lanzarotti (University of Milan)

Jianyi Lin (Università Cattolica del Sacro Cuore)

Jean-Yves Ramel (University of Tours)

----- End forwarded message -----

More information about the FMIndia mailing list